
© 2011 Carnegie Mellon University

Resolving Chaos Arising from

Agile Software Development

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Author
Date

2

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

High Level Alternatives

Approach 1. Blame the Agile development process, fire the folks who
are controlling it and revert to previous development processes

Approach 2. Assess why the current approach is chaotic, determine
ways (processes, technology, personnel) to stabilize the development,
and then continue

3

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Agile Terms

Scrum

• Scrum lead, product owner, developers with appropriate skills

Feature Batch

• New features fixed until batch completion (prioritized)

• Test procedures are developed concurrently

Timebox

• Team agrees to implement the batch in this timebox (weeks)

Alignment

• Vertical change all components for new features

• Horizontal component cohesion and consistent

4

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Developmental Rhythms

Planning Rhythms

• Lifecycle (Program managers, System Engineers and Architects)

– capabilities / features/ components/ tests for each milestone

– relationships between them

• Milestone (System Engineers and Architects)

– Capabilities, features, test scenarios, components built and integrated for
each timebox within the milestone

– describes the mappings between the above for each timebox

• Timebox (Architects, Development Managers)

– allocates efforts to teams to accomplish the plan

– Updates the plan to recover from : slippages, defects, unplanned
workarounds

Implementation Rhythm (Architects and Implementers)

• Focuses on detailed work efforts by teams within timeboxes

5

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Lifecycle Plan - System Engineer

Capabilities

System Engineering

Matrix shows dependencies between

capabilities

Complete

Early

Features

6

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Lifecycle Plan - System Engineer

Capabilities

Milestones

System Engineering

Capabilities

Test Scenarios

1

1

1

2

1

4
1

3

1 2 3 4

Initial System Engineering Plan

7

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Lifecycle Planning - Software Architect

Software Engineering

Software Components

Mapping Capabilities to Software

Capabilities

Software Layers

8

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

System

Life-Cycle Plan- SE and SA

Capabilities

Milestones 1

1

1

2

1
4

1

3

System Engineering

Software Architects

Software Architects

Software Components

1 2 3 4

Workaround

9

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Life-Cycle Plan - SA - Alternatives

Capabilities
System Engineering

Stakeholder Concerns

Architecture Drivers
Resources

Available

10

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Architecture Driven Design (ADD)

Architecture

Drivers
Alternative

Architectural

Patterns

1
1

1
2

1
4

1
3

1 2 3 4

Capabilities

Tests

Components

11

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Milestone Plan- Alternatives

1
1

1

1
2

2

Timeboxes

Optimal

Path

Feasible Paths are any

combination of blue arrows

Note: patterns for timebox

n+1 must be developed in

timebox n

12

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Life-Cycle Plan - SA - Patterns

Architectural

Patterns

1
1

1
2

1
4

1
3

1 2 3 4

Capabilities

Tests

Components

13

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Milestone Plan - Batches Selected

1
1

1

1
2

2

Timeboxes

14

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Timebox Activities

1

2

2

1

3

3

System

Engineer

Business

Rules

Timeboxes

3-1 3-2 3-3 3-4

3-1

Software

Architect

Patterns &

Workarounds

3-1

Developer
Implements

Int & Test

Implements ImplementsImplements

3-1 3-2 3-3

3-2

3-2 3-3

3-3 3-4

3-4

15

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Timebox Re-directions - 1

1
2

2

3-1

3-1

Implements

3-1

3-2

3-2

3-3

Test

Defects

Tests not

Conducted

Unplanned

Workarounds

Feature

Changes

Changes in

Capability PriorityPM

Planning

Session

New

3-2

Update

Other

Planning

Documents

16

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Convincing the PM to Stabilize

Show him examples of success for stabilizing

• and failure of approach1

Understand what went wrong- failure symptoms

Determine Root Cause of failures and mitigation approaches

Develop business scenarios with the PM

• How he would like the process to work

17

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Questionnaire

Organization and process context

• Clashes between the agile process/organization/other processes

Product goals and vision

• Plans and fitness of practices

Product Context

• Architecture vs. coding vs. testing practices, skills and tools

18

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Root Cause Analysis – Typical 1

Symptom

• Scrum teams are spending almost all of their time fixing defects, and new
capability development is continuously slipping

Root Cause

• Initial focus was “far future/general” rather than “next delivery cycle/product specific”

– Plethora of variation parameters that interact detrimentally

– Time pressure to deliver became top priority

– Delivered an immature product

• There are 3 different cycles

– Customer Release (yearly, many variants); IV&V Testing (quarterly, 4
variants), and Developmental (monthly, 1 variant)

19

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Solution

Stabilize the Architecture

• Build an architecture for current products

– Rules, guidelines

– Over a few timeboxes

• Reduce the # of “variant parameterizations”

• Make everyone play from the same sheet music

• Postpone adding new features

Re-plan the timeboxes

Re-visit the testing strategy/team assignments against variants

20

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Root Cause Analysis – Typical 2

Symptom

• Integration of products built by different scrum teams reveals
incompatibility defects causing many failure conditions, leading to
significant out-of-cycle rework

Root Cause

• Cross team coordination is poor, even though there are many
coordination points and much time spent

• Different interpretations of interfaces by different teams

• Product owner on each scrum team are not seeing the big picture

• Mismatch between Architecture and scrum development

21

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Solution

Stabilize to remove failures

• Postpone adding new features

Identify and “collapse” common services across teams

Use Architectural Runway

• A system that has architectural runway contains existing or planned
infrastructure sufficient to allow incorporation of current and near term
anticipated requirements without excessive refactoring

• Architectural Runway is represented by Infrastructure initiatives that have the
same level of importance as the larger scale requirements epics that drive the
company’s vision forward

22

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Root Cause Analysis – Typical 3

Symptom

• Progress towards meeting milestones is unsatisfactory

Root Cause

• Mapping of capability features to software components per scrum cycle is
disorganized

• Some new features are unused in each cycle- wasted effort

• Developer assignment to teams is inflexible

23

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Solution

Build more architectural planning views to align features between teams

Re-organize teams to better fit timebox workloads

24

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Summary

Aligning agile methods with SoS engineering is complex and requires
intricate decision making and planning

Re-planning timebox features is necessary

• NOT within timebox, but in-between

Questionnaire revealed many issues, which could be used to indentify
root-causes and develop action items to recover program stability.

25

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

Contact Information Slide Format

Presenter / Point of Contact

William Wood

RTSS

Telephone: +1 412-268-7723

Email: wgw@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

26

Resolving Chaos Arising from

Agile Software Development

William Wood, 10/17/2011

© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

